Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli.

نویسندگان

  • L C Seaver
  • J A Imlay
چکیده

Escherichia coli generates about 14 microM hydrogen peroxide (H(2)O(2)) per s when it grows exponentially in glucose medium. The steady-state intracellular concentration of H(2)O(2) depends on the rates at which this H(2)O(2) is dissipated by scavenging enzymes and by efflux from the cell. The rates of H(2)O(2) degradation by the two major scavenging enzymes, alkyl hydroperoxide reductase and catalase, were quantified. In order to estimate the rate of efflux, the permeability coefficient of membranes for H(2)O(2) was determined. The coefficient is 1.6 x 10(-3) cm/s, indicating that permeability is substantial but not unlimited. These data allowed internal H(2)O(2) fluxes and concentrations to be calculated. Under these growth conditions, Ahp scavenges the majority of the endogenous H(2)O(2), with a small fraction degraded by catalase and virtually none persisting long enough to penetrate the membrane and exit the cell. The robust scavenging activity maintains the H(2)O(2) concentration inside glucose-grown cells at <10(-7) M, substantially below the level (10(-6) M) at which toxicity is evident. When extracellular H(2)O(2) is present, its flux into the cell can be rapid, but the internal concentration may still be an order of magnitude lower than that outside. The presence of such gradients was confirmed in experiments that revealed different degrees of oxidative stress in cocultured scavenger-deficient mutants. The limited permeability of membranes to H(2)O(2) rationalizes the compartmentalization of scavenging systems and predicts that bacteria that excrete redox-cycling drugs do not experience the same H(2)O(2) dose that they impose on their competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentiation by L-cysteine of the bactericidal effect of hydrogen peroxide in Escherichia coli.

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the ca...

متن کامل

How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway.

When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 μM/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically...

متن کامل

Induction of repair capacity for oxidatively damaged DNA as a component of peroxide stress response in Escherichia coli.

We examined whether or not peroxide stress induces a repair capacity for oxidatively damaged DNA in Escherichia coli cells. Peroxide stress was brought about by adding 30 microM hydrogen peroxide (H2O2) to exponentially growing cells. The following results were obtained. (1) After exposure to H2O2, E. coli resistance to X-rays was enhanced. The acquisition of resistance was inhibited by rifampi...

متن کامل

Escherichia coli xth mutants are hypersensitive to hydrogen peroxide.

Escherichia coli mutants lacking exonuclease III (xthA) are exceptionally sensitive to hydrogen peroxide. They are killed by H2O2 at 20 times the rate of wild-type bacteria and at 3 to 4 times the rate of recA cells. This is the first clear phenotypic sensitivity reported for xth- E. coli and should aid in clarifying peroxide-induced lethality and the in vivo role of exonuclease III.

متن کامل

Several pathways of hydrogen peroxide action that damage the E. coli genome

Hydrogen peroxide is an important reactive oxygen species (ROS) that arises either during the aerobic respiration process or as a by-product of water radiolysis after exposure to ionizing radiation. The reaction of hydrogen peroxide with transition metals imposes on cells an oxidative stress condition that can result in damage to cell components such as proteins, lipids and principally to DNA, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 24  شماره 

صفحات  -

تاریخ انتشار 2001